Skip to main content

12 Noviembre 2019

Controlar el tamaño de las gotas para mitigar el polvo

Información de Fueyo Editores

Todo el mundo conoce lo difícil que es trabajar en ambientes polvorientos, en especial cuando el polvo está en suspensión. Mitigar el polvo ayudará a reducir costes de mantenimiento, de maquinaria y de limpieza, pero también a mejorar el bienestar de trabajadores y vecinos y a aumentar la visibilidad y minimizar accidentes.

La directiva europea 2017/2398, que debe ser transpuesta a la normativa española antes del 17 de enero de 2020, considera a varios agentes, en su fracción respirable, como mutágenos y cancerígenos. Uno de ellos es el polvo de sílice cristalina. Por lo tanto, el polvo en suspensión que se produce en canteras, áridos, minas o tareas de reciclaje (que contiene esta sílice cristalina) puede producir cáncer y silicosis a los trabajadores y al público en general.

Desde la Unión Europea ya se han comenzado a exigir acciones preventivas a las empresas que se dedican a realizar trabajos que conllevan estos riesgos.

La estrategia que hay que seguir es la prevención: evitar que el polvo se genere y entre en suspensión. La segunda es la protección colectiva, es decir, impedir que dicho polvo llegue a las personas. Y como último paso, la protección individual. En ningún caso basta solo con la protección individual; debe existir tanto la colectiva como la prevención si son posibles.

Por otro lado, la principal medida que hay que adoptar es actuar sobre el foco de emisión de polvo para evitar que se ponga en suspensión o mitigarlo lo antes posible. Uno de los sistemas más efectivos para ello se basa en la nebulización de agua mediante cañones, que pueden reducir hasta 11 veces la cantidad de polvo.

EL COMPORTAMIENTO DEL POLVO DEPENDIENDO DE SU TAMAÑO

La fracción respirable de la sílice cristalina es de 10 micrómetros (μm) o menor. La fracción visible por el ojo humano es a partir de 30 μm. Esto significa que el polvo cancerígeno es invisible. Las otras partículas de polvo más grandes, de entre 60 y 200 μm, pueden entrar en suspensión por movimientos de aire, pero solo se elevarían a 1 metro más o menos en condiciones normales y caerían al suelo por sí mismas en no mucho tiempo.

Sin embargo, las de menos de 60 μm quedarían en suspensión durante largos periodos de tiempo y viajan grandes distancias en el aire. Precisamente, la fracción respirable (de menos de 10 μm) viaja distancias aún más largas. Recordad que estas partículas son las cancerígenas y mutágenas.

En minería, antes de que el polvo se ponga en suspensión, se deben utilizar boquillas de agua muy cerca del foco de emisión (25 a 30 cm) con tamaños de gota superiores a 100 μm, preferiblemente de 200 a 500 μm para humedecer los materiales.

En cambio, si el polvo ya está en el aire, el objetivo es mitigarlo. Para conseguirlo, las gotas de agua deben tener un tamaño similar al de las partículas de polvo. La intención es hacer que las gotas colisionen y se adhieran (se aglomeren) a las partículas de polvo, haciendo que caigan del aire. En este caso, se ha demostrado que las gotas en el rango de 2 a 20 μm son las más efectivas.

Si el diámetro de la gota es mucho mayor que el de la partícula de polvo, ésta última simplemente seguirá el caudal de aire alrededor de la gota. Si la gota de agua es de un tamaño comparable al de la partícula de polvo, se producirá contacto; esto ocurre cuando la partícula de polvo, al seguir la corriente, colisiona con la gota (Figura 2). Por lo tanto, para una aglomeración óptima, los tamaños de partículas y gotas de agua deben ser aproximadamente equivalentes.

MEJOR MÁS GOTAS DE MENOR VOLUMEN

Además, la probabilidad de impactación también aumenta a medida que disminuye el tamaño de las gotas. Esto se debe simplemente a que cuanto menor sea el tamaño de las gotas de agua, mayor cantidad de estas habrá y más superficie se cubrirá.

Figura 4La Figura 4 relaciona el rango de tamaño de las partículas de polvo que se pueden producir en un trabajo de minería con el rango de tamaño de las gotas de precipitaciones comunes. Esta figura también incluye el tiempo que tarda cada clase de gota en caer a una distancia de 10 pies (aprox. 3 metros), para dar una estimación de cuánto tiempo permanecerán en el aire esas gotas de varios tamaños.

LA CLAVE: LAS BOQUILLAS

Muchos factores pueden afectar al tamaño de la gota: las propiedades del líquido, la capacidad de la boquilla, la presión o el ángulo de la pulverización.

En España, el Instituto Nacional de Silicosis (INS) recalca la importancia que tiene elegir el tamaño idóneo de las gotas de agua, ya que, si no se produce el tamaño adecuado de gota, no se conseguirá mitigar el polvo. Como se puede ver en la Figura 3, con una gota media de 34,6 μm, la inmensa mayoría de las gotas son menores de 20 μm. Los sistemas de nebulización como SprayStream, distribuido por Anzeve en España, producen microgotas de agua capaces de atrapar las partículas de polvo en suspensión sin mojar el suelo. Estos cañones se fabrican en diferentes tamaños y alcances y permiten elegir las boquillas adecuadas para conseguir el tamaño deseado en cada situación.

Ahora que ya se entiende la importancia del tamaño de la gota, solo falta contactar con un experto para poder determinar qué estilo de boquilla y patrón de pulverización se adapta a las necesidades, cuál es el ángulo adecuado, qué variable de presión escoger, con qué impacto hacia la superficie, dónde instalarlas y qué tipo de agua utilizar.

 

Información de Fueyo Editores

Suscríbase a nuestro Newsletter y recibirá en su correo las noticias de nuestro portal.
Suscríbase a nuestro Newsletter y recibirá en su correo las noticias de nuestro portal.